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Abstract: - The maintenance scheduling of thermal generators is a large-scale combinatorial 

optimization problem with constraints. In this paper we introduce the Max-Min Ant System 

based version of the Ant System. This algorithm reinforces local search in neighborhood of 

the best solution found in each iteration while implementing methods to slow convergence 

and facilitate exploration.Max-Min Ant System (MMAS) algorithm has been proved to be 

very effective in finding optimum solution to hard combinational optimization problems. To 

show its efficiency and effectiveness, the proposed Max-Min Ant System is applied to a real-

scale system, and further experimenting leads to results that are commented. 

 

Keywords:Thermal Generator Maintenance Scheduling Problem, Ant Colony Optimization, 

Max-Min Ant System. 

 

1. Introduction 

 
The Thermal Generator Maintenance 

Scheduling Problem is a complex 

multivariable problem that is necessary for 

the reliability and right operation of a 

generator system, given that the whole 

production cost is dependent on the 

maintenance and operation cost. Thus, the 

maintenance procedure has to be scheduled 

and complied with the best possible way, 

minimizing these two costs and at the same 

time, covering the energy demands, so as 

every constraint of the problem is satisfied. 
The problem has been studied in the 

past with a variety of modeling methods. 

The initial formulation was made by Gruhl 

[1], [2]. He presented an umbrella of 

scheduling problems, one of which was the 

generator maintenance scheduling 

problem, with a linear approach. 

Two years later, Dopazo and Merill [3] 

developed a model which was claimed to 

have the ability of finding the best 

solution, but this approach was lacking in 

real-scale problems application, something 

that Zurn and Quintana [4] later achieved 

to do using computational methods.  

In 1983, Yamayee and Sidenblad [5] 

improved the cost function that was used 

till then, with great improvements in 

execution time.  

In 1991, Satoh and Nara [6] applied for 

the first time a stochastic method, called 

Simulated Annealing with very good 

results in large-scale systems as well, that 

were impossible to be solved with linear 

methods in the past. They also investigated 

the problem with genetic algorithms [7] 

and tabu-list methods [8] with similar 

results, but with the ability to solve real-

scale problems, too.  

In 1993, Charest and Ferland [9] tried 

to modify the linear method with 

successful results in execution time, while 

Dahal and McDonald [10] applied a 

genetic algorithm in Boolean 
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representation [11] which had also some 

good results. In 1997, Burke and Smith 

[12] tried to create a hybrid model of the 

simulated annealing and the tabu-list 

method without success, following another 

attempt to make another hybrid model with 

memetic and tabu-list methods three years 

later, which resulted in better results, but 

with a small increase in execution time. 

In 2010 Y.Yare., G.K. 

Venayagamoorthy (13) using multiple 

swarms-MDPSO framework with good 

results for Optimal maintenance 

scheduling of generators problem. 

In 2011, Saraiva, Pereiva, Mendes, and 

Sousa (14) solved the generator 

maintenance scheduling problem using a 

simulated annealing algorithm. 

In this paper, we introduce Max-Min 

Ant System Algorithm [15], an imported 

version of basic Ant System [16] of the 

family algorithms: Ant Colony 

Optimization (ACO) [17], which was 

inspired by the observation of ant colonies.  

This paper is composed of the 

following sections: Section 2, describes 

general Ant Colony Optimization,Ant 

System(AS) and Max-Min Ant 

System(MMAS) algorithms. In section 3, 

we represent the formulation of the 

Thermal Generator Maintenance 

Scheduling problem. In section 4, we 

represent the implementation of MMAS 

for the problem and the algorithm used. 

The paper ends with case studies on a real 

system in section 5 and conclusions in 

section 6.  

 

2. ANT COLONY OPTIMIZATION 

        

2.1. Generally Analogy 

 

 The Ant Colony Optimization 

(ACO) [18] is a metaheuristic to solve 

combinatorial optimization problems, is 

motivated by the behavior of real ant 

colonies. When ants attempt to find short 

paths between their nest and food sources, 

they communicate indirectly by using 

pheromone (pheromone trail) to mark the 

decisions they made when building their 

respective paths. Within ACO algorithms, 

the optimization problem is represented as 

a complete weighted graph G = (N,A) with 

N being the set of nodes and A the set of 

edges fully connecting the nodes N. In the 

Travelling Salesman Problem (TSP) 

application, edges have a cost associated 

(e.g. their length) and the problem is to 

find a minimal-length closed tour that 

visits all the nodes once and only once. In 

order to solve the problem, random walks 

of a fixed number of ants through the 

graph take palce. The transition 

probabilities of each ant are governed by 

two parameters associated to the edges of 

the graph: the pheromone values (or 

pheromone trail) τij, representing the 

learned desirability of choosing node j 

when in node i. inverse of the distance 

between two nodes i and j: 
ij

ij
d

n
1

=   where 

ijd  is the distance between these two 

nodes. 

 The more distinctive feature of 

ACO is the management of pheromone 

trails that are used, in conjunction with the 

objective function, to construct new 

solutions. Informally, the pheromone trails 

are used for exploration and exploitation. 

Exploration representing the probabilistic 

choice of the components used to construct 

a solution. A higher probability is given to 

elements with a strong pheromone trail. 

Exploitation is based on the choice of the 

component that maximizes ablend of 

pheromone-trail values and partial 

objective function evaluations. The 

mathematical formulations of the ACO 

algorithms presented in this paper named 

Ant System (AS) and Max-Min Ant 

System (MMAS), are given in the 

following sections. 
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2.2. Ant System 

 

 Ant System (AS) [19] is the 

original and most simplistic ACO 

algorithm. The decision policy used within 

AS is as follows: The probability with 

which ant k, currently at node i, chooses to 

go to node j is given [16] by: 

 

(1)       [ ] [ ]
[ ] [ ]∑

∈

⋅

⋅
=

k
iJl

ill

ijijk

ij
nt

nt
tp βα

ι

βα

τ

τ
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)(

                             

 

 If j є k

iJ    and 0 if k

iJj ∉  

 

:k

iJ  is the feasible neighborhood of ant k, 

that is, the set of nodes which ant k has not 

yet visited. 

)(tijτ  : is the concentration of pheromone 

associated with edge (i,j) in iteration t. 

:ijn  is the inverse of the length of the edge 

known as visibility 

α  and β: are parameters that control the 

relative importance of pheromone intensity 

versus visibility 

 Upon conclusion of an iteration 

(i.e. each ant has generated a solution) the 

pheromone on each edge is updated, 

according to the following formula: 

  

(2) )()()( ttt ijijij τρττ ∆+=   

                                                         

Where ρ is the coefficient representing 

pheromone persistence (0 ≤ ρ < 1), and  

ijτ∆ , is a function of the solutions found at 

iteration t, given by:  

(3) )(
1

t
n

k

k

ijij ∑
=

∆=∆ ττ  

         

n: number of ants 

 :k

ijτ∆ is the quantity per unit of length of 

pheromone addition laid on edge (i,j) by 

the k
th

 ant at the end of iteration t, is given 

by:     
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Where )(tT k is the tour done by ant k at 

iteration t, )(tLk , is its length and Q is a 

constant parameter, used for defining to be 

of high quality solutions   with low cost.        

 

2.3. Max-Min Ant System 

 Max-Min Ant System (MMAS) 

[15], is a direct improvement over AS. The 

solutions in MMAS are constructed in 

exactly the same way as in AS, that is, the 

selection probabilities are calculated as in 

Equation (1).  

 The main modifications by MMAS 

with respect to AS are the following: 

(i) To exploit the best solutions found, 

after each iteration only one single ant is 

allowed to add pheromone  

     

  

(ii) To avoid search stagnation, the allowed 

range of the pheromone trail strengths is 

limited to interval [ ])(),( maxmin tt ττ , that is 

)()()( maxmin ttt ij τττ ≤≤   

  

(iii) The pheromone trails are initialized to 

the upper trail limit, which causes a higher 

exploitation at the start of the algorithm. 

The upper bound, )(max tτ , is given by: 

 

 
)()1(

1
)(max

tCost
t

optρ
τ

−
=   (5)

      

   where )(tCostopt , is the optimal solution 

value for a specific problem. 

The lower bound )(min tτ , is given by: 

 

n
best

n
best

p

pt
t

)1(

1)((
)(

max

min
−

−
=

λ

τ
τ   (6)
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Where bestp  is the probability of creating 

the global-best solution. This parameter is 

defined from the user. If  bestp =1 then 

)(min tτ =0. Also if  bestp  is very small there 

is a probability to use )(min tτ > )(max tτ . In 

the case we set  )(min tτ = )(max tτ and this 

algorithm uses only this heuristic 

information for solving the problem, n is 

the number of decision points and λ is the 

average number of edges at each decision 

point. 

 

3. Formulation of the Problem 
 

The objective of the Thermal Generator 

Maintenance Scheduling Problem is the 

maintenance of the energy production units 

of a system in a given horizon, with the 

lowest possible cost. 

The list of symbols that describe the 

problem is as follows[20,21]: 

i : Number of generator 

Ι : Number of  generators 

j : Number of week 

xi : Maintenance start period; xi ∈ {1,2, 

…,J} 

J : Horizon in weeks 

Xi : Set of proposed maintenance start 

periods in weeks 

Mi : Maintenance length in weeks 

Yij : State variable:  

 

(7)          







 −

=Υ

otherwise

jperiodat

enancemainisiunitif

ij

,0

int,1

 

 

pij : power output of unit-I at period-j 

fi : fuel cost coefficient (linear cost 

function) 

ci(xi) : maintenance cost of unit-I when the 

maintenance is committed at period ix  

Pi : capacity of unit i 

Dj : anticipated power demand at period-j 

Rj : required power reserve at period-j 

 

The generator maintenance scheduling 

problem is formulated as shown below: 

 

Objective function 

The objective is to minimize the 

objective function which is the sum of the 

following two terms: 

 







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== =

)(
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I

i

i

I

i
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J

j

i xcpfMin  (8)

   

Where the first term is the 

production cost and the second is the 

maintenance cost. 

 

Constraints 

1) The nominal starting period of 

maintenance is pre-specified for each 

generating unit: 

 

{ }JXx ii ,...,2,1⊆∈           (9)

     

2) Once the maintenance of unit-I 

starts, the unit must be in the maintenance 

state for just iM  periods: 

 









+=

−+=

−=

=Υ

JMxj

Mxxj

xj

ij

ii

iii

,...,,0

1,...,,1

1,...,2,1,0

  (10)

     

3) If unit- 1i  and unit- 2i  cannot be 

maintained in a given week because of the 

crew constraint, the following constraint is 

imposed: 

 

JjYY jiji ,...,2,1,1)2()1( =≤+   (11)

     

4) If the maintenance of unit- 1i  must 

be finished prior to the starting of that of 

unit- 2i , the following constraint is added: 

 

211 iii xMx ≤+        (12) 

   

5) The generator output must be less 

than its upper limit; and the output of the 
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generator in maintenance must be equal to 

zero. Such an operation constraint is 

expressed by:  

 

(13) JjIiyPp ijiij ,...,1,,...,1,)1(0 ==−⋅≤≤   

     

6) The demand constraint must be 

met: 

(14) JjDp j

I

i

ij ,...,2,1,
1

==∑
=

 

      

7) In order to ensure that the total 

available power is greater than the demand 

jD  even when a unit random outage 

occurs, the reserve constraints are imposed. 

That is, the total available power from 

units which are not committed must be 

greater than the demand plus reserve: 

 

(15) JjRDyP jj

I

i

iji ,...,2,1,)1(
1

=+≥−⋅∑
=

     

Penalty Function 

In the generator maintenance 

scheduling problem, the constraints are 

classified into two groups; “easy” 

constraints and “difficult” constraints. The 

easy constraints are equations (9), (10), 

(12), (13), the difficult constraints are 

equations (11), (14), (15). Since the set iX  

is given, the value of ix  can be selected as 

a member of iX  so that equations (9), (12) 

are satisfied. Then the value of ijy  is 

directly defined by equation (10), and 

equation (13) becomes a simple bound 

on ijp . On the other hand, it is very 

difficult to find a feasible solution which 

satisfies equations(11), (14) and (15). So, 

the artificial variables iz , iu , and iv  are 

introduced corresponding to equations 

(11), (14) and (15), with associated 

positive penalty parameters α, β, and γ. 

Then the problem is re-formulated as 

follows: 
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By using the above formulation, once 

the value of ix  is determined, the value of 

ijy  is directly defined, and the value of ijp  

is calculated through the equal incremental 

method  for the economic dispatch 

problem [22]. Therefore, the value of the 

objective function can be efficiently 

evaluated if the value of ix  is specified. 

 

3. Implementation of MMAS for the 

Generator Maintenance Scheduling 

Problem 
 

a. Expression approach 

 

For the implementation of the problem, 

we used a sort of graph. Every node of the 
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graph represents a feasible solution, and 

more specifically a feasible week that the 

maintenance of every generator can be 

started. In this way, every ant traverses one 

by one the generator units, choosing one of 

the feasible maintenance starting periods 

and, in the end, constructing a complete 

solution. When all ants complete their 

tours, the iteration is completed and a new 

one takes place. 

   

1I
2I

mI

1t

2t

nt

1t

2t

1t

2t

nt
nt

 

 Figure 1 – Representation of the problem 

using graph 

 

So, on every step, all units are selected, 

and the total cost of the solution is 

calculated, summing up the total 

maintenance cost, plus the total generator 

operation cost needed for every week (plus 

the penalty of erroneous solutions, if any).  

 

When the k
th

 ant is on town i, the 

probability to move to town j, is given by 

the equation: 

(26)     
pk

ij(t)=

[τij(t)]
a ⋅ [ηij]

β

[τ
ij
(t)]a ⋅ [η

ij
]β

j∈ji
k (t)

∑
,if j∈ ji

k(t)

0 ,if j∉ ji

k(t)

 
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 
 

 

 
 

   

where ji

k  are the towns that are not yet 

included on the agent’s tabu list. As 

visibility 
ij

η between towns, we will use 

the equation 
)(1

1
)(

tPCV
t

ij

ij +
=η  where 

)(tPCV
ij

 is a method counting the total 

number of the Problem Constraint 

Violations. We will bias each constraint 

violation using weights which correspond 

to the relative importance of each 

constraint. Thus, each ant will be guided as 

to not choose the towns that violate the 

problem’s constraints. 

Pheromone Update Rule: )(tijτ  is 

the pheromone quantity that is found in 

edge that connects every generator (except 

the reference generator) with power level. 

Because the algorithm that was used is the 

MMAS some notifications must be made 

concerning the pheromone calculation: 

    (i) Renewal of pheromone takes place 

from every ant in every iteration. Either 

from the one that has found the global best 

solution (global best ant) or from the one 

that has found the best solution in an 

iteration (iteration best ant). These two 

mechanisms can be combined. 

    (ii) First of all )(tijτ  is the quantity of 

pheromone on the edge that connects 

machine i with its power level j. At the 

beginning this quantity should be equal to 

maxτ , but since this has not been calculated 

yet we have to use a large value 0τ  and 

after the first iteration we must set all 

pheromone trails equal to maxτ . The 

resulting pheromone update rule is: 

 

 ( 1) ( ) ( )ij ij ijt t tτ ρτ τ+ = + ∆  (27)

      

  

Where  

                    

 )(  ),( if             ,0     
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∗

∗∗

tTji
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Cost
*
(t) is either the global best solution so 

far (Costbest(t)), or the best solution during 

the current iteration (Costiter(t)) and T
*
(t) is 

the list that keeps track for the best 

solution. 

ρ with  0≤ ρ≤1 is the evaporation 

coefficient  

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Aristidis Vlachos

E-ISSN: 2224-266X 310 Issue 9, Volume 11, September 2012



 After this step it is checked if the 

pheromone trails are within the limits minτ  

, maxτ  and finally the pheromone is updated 

according to the following relationship: 

 

(28) 








>
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←

otherwise          

 if        

 if        

maxmax
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τττ

τττ

τ                                                                

  

 The upper bound )(max tτ  and the 

lower bound )(min tτ  are given by Equation 

(5) and Equation (6) respectively. 

    (iii) Smoothing of pheromone (optional 

step): When the algorithm converges, the 

following mechanism can be activated, that 

increases pheromone levels depending on 

the difference from maxτ , so that the 

selection possibility of trails with low 

pheromone levels is minimized. This can 

take place as following: 

 

(29) ))()(()( max ttt ijijij ττδττ −+=∗

      

where )(tij

∗τ  and )(tijτ  are the pheromone 

trails before and after smoothing, 

 δ is a parameter set by the user and 

0 ≤δ ≤ 1. For δ =1 there is a 

reinitialization of pheromone levels and for 

δ =0, this mechanism becomes inactivate. 

 

     
 

b. The algorithm 

 

1. Define problem parameters for each 

agent and generator. 

2. Calculation of a first solution for each 

unit.  

3. Evaluation of every solution constructed 

by each ant 

Costbest = min { Costbest , Costiteration-best  } 

4.       Renew pheromone using the 

pheromone update rule, and also 

max minτ τ− levels.  

5. . Repeat algorithm from Step 3 

6. (Optional Step).When the algorithm 

seems to converge,smoothing of 

pheromone trail can take place. 

 

4. Case study on a real-scale 

system of generators 
 

The algorithm just described, was 

implemented on a real scale system of 

generator units [23] with 22 power 

generator units that have to be maintained 

within a 52-week horizon. 

 The following table shows the 

parameters that describe every generator 

unit’s operation and maintenance: 
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Table 1 – System Parameters 

 

 

Ι iR  iE  iL  iM  a b c if  
Crew constraint for every 

maintenance week 
1 100 1 47 6 70 8.00 0.00585 0.25 10+10+10+5+5+5 

2 100 1 50 3 70 8.00 0.00580 0.20 15+15+15 

3 100 1 50 3 70 8.00 0.00580 0.20 10+15+15 

4 100 1 50 3 70 8.00 0.00580 0.20 10+10+10 

5 90 1 47 6 60 8.00 0.00610 0.35 10+10+10+5+5+5 

6 90 1 49 4 60 8.00 0.00610 0.30 10+10+10+10 

7 95 1 50 3 68 8.00 0.00579 0.20 10+10+10 

8 100 1 49 4 72 8.00 0.00565 0.20 10+10+5+5 

9 650 27 48 5 525 7.00 0.00120 0.52 10+10+10+5+5 

10 610 6 11 12 510 7.20. 0.00142 0.50 3+2+2+2+2+2+2+2+2+2+2+3 

11 91 1 49 4 62 8.25 0.00600 0.20 10+10+10+10 

12 100 1 45 8 74 8.15 0.00578 0.30 10+10+5+5+5+5+5+3 

13 100 1 50 3 70 8.00 0.00580 0.20 15+15+15 

14 100 1 47 6 70 8.00 0.00585 0.25 10+10+10+5+5+5 

15 220 1 48 5 85 7.90 0.00460 0.25 10+10+10+10+10 

16 220 1 47 6 87 7.95 0.00464 0.25 10+10+10+5+5+5 

17 100 1 48 5 69 8.18 0.00570 0.20 10+10+10+10+10 

18 100 1 48 5 69 8.17 0,00572 0.25 10+10+10+5+5 

19 220 1 50 3 81 7.90 0.00463 0.25 10+10+10 

20 220 1 50 3 82 7.95 0.00462 0.25 10+15+15 

21 240 1 50 3 82 7.40 0.00410 0.30 15+15+15 

22 240 1 48 5 80 7.42 0.00415 0.30 10+10+10+5+5 
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       Table 2 - Weekly demand 

 

j Demand jD  j Demand jD  

1 1694 27 1737 

2 1714 28 1927 

3 1844 29 2137 

4 1694 30 1927 

5 1684 31 1907 

6 1763 32 1888 

7 1663 33 1818 

8 1583 34 1848 

9 1543 35 2118 

10 1586 36 1879 

11 1690 37 2089 

12 1496 38 1989 

13 1456 39 1999 

14 1396 40 1982 

15 1443 41 1672 

16 1273 42 1782 

17 1263 43 1772 

18 1655 44 1556 

19 1695 45 1706 

20 1675 46 1806 

21 1805 47 1826 

22 1705 48 1906 

23 1766 49 1999 

24 1946 50 2109 

25 2116 51 2209 

26 1916 52 1779 

 

where: 

iR  the highest level of energy can be 

produced.  

iE  and iL  the earliest and latest period that 

the maintenance can start.  

iM the maintenance period length (in 

weeks). 

a, b, c, the cost parameters for the 

operation of the generators. 

if  the fuel cost coefficient (linear 

function). 

and, finally, the maintenance crew needed 

for every maintenance week. 

The minimum level of energy that can be 

produced from each generator is zero. 

Table 2, also, represents the 

anticipated demand of the system for every 

week within the horizon. 

 It is worth mentioning that the 

required reserve for each week of the 

horizon can be defined using one of the 

following approaches: 

i.     As a constant percentage of the energy 

demand, jD . 

ii.     As equal to the size of the largest 

generating unit. 

iii.  In dependence of other necessary 

criteria. 

Here, we applied the first approach, with 

a 20% percentage on demand jD .  

That is: JjDR jj ,...,2,1,%20 =⋅=  

 It is important to define some 

determinant parameters for the solution of 

the problem from the beginning. The 

following executions of the problem are 

looking into the following matters: 

• As we are working on a real system, 

it is easy to appreciate the fact that we 

need a maintenance crew constraint 

that will be: 

o  “Flexible”, concerning 

the solutions that can be 

produced, without 

confining them. 

o Big enough to produce 

solutions without 

violations-penalties and, 

respectively, non-

feasible. 

o Small enough so as to 

minimize the existence 

of not needed crew. 

For all these reasons, after close study of 

the problem constraint table and the 

solutions produced, the crew number was 

set to 30. 

• As we can see, the objective function 

describes the constraint violations as 
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extra cost added to the production cost. 

As these solutions are not feasible, we 

have to define the size of the 

parameters α, β and γ to be analogous 

with the solution cost of the problem, 

so as to be added an extra cost feasible 

to reject them. After experimental 

executions, we found that a solution 

without violations is in the order of 

hundreds millions cost units (10
8
). So, 

forasmuch as each violation can 

occasionally occur, the parameters 

were defined as follows: 

• α = 100 

• β = 100 

• γ =  20 

The definition of the weight parameter α in 

regard to the weight parameter β, is also 

essential. The following values were tested 

with β=1: represent the results given by 

experimental executions. 

 

Table 3 – α versus Best solution  

 Best Cost 

α Best solution 

0.01 3.34650000 

0.02 3.34320000 

0.03 3.34230000 

0.05 3.33560000 

0.1 3.32540000 

0.2 3.34120000 

0.3 3.34480000 

0.4 3.34670000 

0.6 3.34820000 

0.8 3.34510000 

1 3.35100000 

  

 

 

 

 

 

 

 

 

Best Cost 

 

 

 

 

 

 

 

 

 

 

 

α 

 

 

 

 

A graphical representation  of pbest versus 

Best Cost is shown in the Figure  3. 

 
 

 

Table 4 – pbest versus Best cost                

Best Cost 

pbest Best cost 

0.2 3.34470000 

0.4 3.34100000 

0.6 3.32540000 

0.8 3.34210000 

1 3.34520000 

 

 

Best Cost 

 

 

                       

 

 

 

 

 

 

  

 

pbest 

Figure 3- pbest versus Best Cost 

   

Figure 2 - α versus Best Cost 
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The following parameters were chosen 

The following parameters ,for MMAS 

algorithm,were chosen for the 

resolution of the problem: 

 

• α = 0.2 

• β = 1 

• ρ=0.3 

• pbest = 0.7 

 

 

The execution of the proposed method 

was run on an AMD Athlon 3000+ 1.79 

GHz processor giving the following 

results: 

• The best solution found is  

[1, 16, 12, 21, 43, 3, 28, 6, 33, 7, 17, 10, 

44, 36, 47, 27, 29, 38, 33, 28, 7, 40] 

  

That is the period that maintenance for 

every unit of the system can start . 

The best solution cost found is 

3.32540000. 

• The maintenance periods are 

represented in detail on the following 

diagram: 

 
Figure 4 – Maintenance periods of Best solution 

 

where the feasible maintenance periods are 

represented with “x” and the selected 

maintenance periods with “*” according to 

the best solution. 

• The best solution was found on 

iteration number 72. 

• The best solution progress versus 

iterations is represented to the 

following figure: 

 
Figure 5 – Best solution cost versus Iterations 

 

• The total execution time is  0h:2m:36s.   

 

5. Conclusion 
 

This paper looked into the Thermal 

Generator Maintenance Scheduling 

Problem of a real-scale system of energy 

production units. The problem has been 

studied with many mathematical and 

heuristic approaches in the past. In this 

project, we seek better results using the 

Max-Min Ant System algorithm which 

belongs to the Ant Colony Optimization 

algorithms. 

The results produced prove that the 

algorithm can be applied successfully to 

the problem so as the optimum solutions 

can be found, even in real energy 

production systems where the complexity 

raises significantly, because of the number 

of generating units, but also due to the 

number of feasible solutions that have to 

be produced in a reasonable time interval. 
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